pyspark之Structured Streaming文件file案例

# ge

nerate_file.py # 生成数据 生成500个文件,每个文件1000条数据 # 生成数据格式:eventtime name province action ()时间 用户名 省份 动作) import os import time import shutil import time FIRST_NAME = ['Zhao', 'Qian', 'Sun', 'Li', 'Zhou', 'Wu', 'Zheng', 'Wang'] SECOND_NAME = ['San', 'Si', 'Wu', 'Chen', 'Yang', 'Min', 'Jie', 'Qi'] PROVINCE = ['BeiJing', 'ShanDong', 'ShangHai', 'HeNan', 'HaErBin'] ACTION = ['login', 'logout', 'purchase'] PATH = "/opt/software/tmp/" DATA_PATH = "/opt/software/tmp/data/" # 初始化环境 def test_Setup(): if os.path.exists(DATA_PATH): shutil.rmtree(DATA_PATH) os.mkdir(DATA_PATH) # 清理数据,恢复测试环境 def test_TearDown(): shutile.rmtree(DATA_PATH) # 数据保存文件 def writeAndMove(filename,content): with open(PATH+filename,'wt',encoding='utf-8') as f: f.write(content) shutil.move(PATH+filename,DATA_PATH+filename) if __name__ == '__main__': test_Setup() for i in range(500): filename = "user_action_{}.log".format(i) """ 验证spark输出模式,complete和update,增加代码,第一个文件i=0时,设置PROVINCE = "TAIWAN" """ if i == 0: province= ['TaiWan'] else: province = PROVINCE content = "" for _ in range(1000): content += "{} {} {} {} ".format(str(int(time.time())),random.choice(FIRST_NAME)+random.choice(SECOND_NAME),random.choice(province),random.choice(ACTION)) writeAndMove(filename,content) time.sleep(10) # spark_file_test.py # 读取DATA文件夹下面文件,按照省份统计数据,主要考虑window情况,按照window情况测试,同时针对 outputMode和输出console和mysql进行考虑,其中保存到mysql时添加batch字段 from pyspark.sql import SparkSession,DataFrame from pyspark.sql.functions import split,lit,from_unixtime DATA_PATH = "/opt/software/tmp/data/" if __name__ == '__main__': spark = SparkSession.builder.getOrCreate() lines = spark.readStream.format("text").option("seq"," ").load(DATA_PATH) # 分隔符为空格 userinfo = lines.select(split(lines.value," ").alias("info")) # 第一个为eventtime 第二个为name 第三个为province 第四个为action # userinfo['info'][0]等同于userinfo['info'].getIterm(0) user = userinfo.select(from_unixtime(userinfo['info'][0]).alias('eventtime'), userinfo['info'][1].alias('name'),userinfo['info'][2].alias('province'), userinfo['info'][3].alias('action')) """ 测试1:数据直接输出到控制台,由于没有采用聚合,输出模式选择update user.writeStream.outputMode("update").format("console").trigger(processingTime="8 seconds").start().awaitTermination() """ """ 测试2:数据存储到数据库,新建数据库表,可以通过printSchema()查看数据类型情况 def insert_into_mysql_batch(df:DataFrame,batch): if df.count()>0: # 此处将batch添加到df中,采用lit函数 data = df.withColumn("batch",lit(batch)) data.write.format("jdbc"). option("driver","com.mysql.jdbc.Driver"). option("url","jdbc:mysql://localhost:3306/spark").option("user","root"). option("password","root").option("dbtable","user_log"). option("batchsize",1000).mode("append").save() else: pass user.writeStream.outputMode("update").foreachBatch((insert_into_mysql_batch)).trigger(processingTime="20 seconds").start().awaitTermination() """ """ 测试3:数据按照省份统计后,输出到控制台,分析complete和update输出模式区别,针对该问题,调整输入,province="TaiWan"只会输入1次,即如果输出方式complete,则每batch都会输出,update的话,只会出现在一个batch userProvinceCounts = user.groupBy("province").count() userProvinceCounts = userProvinceCounts.select(userProvinceCounts['province'],userProvinceCounts["count"].alias('sl')) # 测试输出模式complete:complete将总计算结果都进行输出 """ batch 0 TaiWan 1000 batch 1 TaiWan 1000 其他省份 sl batch 2 TaiWan 1000 其他省份 sl """ userProvinceCounts.writeStream.outputMode("complete").format("console").trigger(processingTime="20 seconds").start().awaitTermination() # 测试输出模式update:update只输出相比上个批次变动的内容(新增或修改) batch 0 TaiWan 1000 batch 1 中没有TaiWan输出 userProvinceCounts.writeStream.outputMode("complete").format("console").trigger(processingTime="20 seconds").start().awaitTermination() """