yolov5 opencv dnn部署自己的模型
-
-
- github开源代码地址
- 使用github源码结合自己导出的onnx模型推理自己的视频
-
- 推理条件
- c++部署
- c++ 推理结果
-
github开源代码地址
- yolov5官网还提供的dnn、tensorrt推理链接
- 本人使用的opencv c++ github代码,代码作者非本人,也是上面作者推荐的链接之一
- 如果想要尝试直接运行源码中的yolo.cpp文件和yolov5s.pt推理sample.mp4,请参考这个链接的介绍
使用github源码结合自己导出的onnx模型推理自己的视频
推理条件
windows 10
Visual Studio 2019
Nvidia GeForce GTX 1070
opencv 4.5.5、opencv4.7.0 (注意 4.7.0中也会出现跟yolov5 opencv dnn部署 github代码一样的问题)
yolov5 v6.1版本
c++部署
环境和代码的大致步骤跟yolov5 opencv dnn部署 github代码一样
在将所有前置布置好了之后,运行yolo.cpp的时候可能会出现图1problem的问题。
这个是由于yolov5 v6.1版本的问题,可以参考github源码中的issue的解决方案。当然,也可以按照下面的进行代码进行修改。
#include <fstream> #include <opencv2/opencv.hpp> std::vector<std::string> load_class_list() { std::vector<std::string> class_list; std::ifstream ifs("./config_files/classes_fire.txt"); std::string line; while (getline(ifs, line)) { class_list.push_back(line); } return class_list; } void load_net(cv::dnn::Net &net, bool is_cuda) { auto result = cv::dnn::readNet("./config_files/yolov5n.onnx"); if (is_cuda) { std::cout << "Attempty to use CUDA "; result.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); result.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); } else { std::cout << "Running on CPU "; result.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV); result.setPreferableTarget(cv::dnn::DNN_TARGET_CPU); } net = result; } const std::vector<cv::Scalar> colors = {cv::Scalar(255, 255, 0), cv::Scalar(0, 255, 0), cv::Scalar(0, 255, 255), cv::Scalar(255, 0, 0)}; const float INPUT_WIDTH = 640.0; const float INPUT_HEIGHT = 640.0; const float SCORE_THRESHOLD = 0.2; const float NMS_THRESHOLD = 0.4; const float CONFIDENCE_THRESHOLD = 0.4; struct Detection { int class_id; float confidence; cv::Rect box; }; cv::Mat format_yolov5(const cv::Mat &source) { int col = source.cols; int row = source.rows; int _max = MAX(col, row); cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3); source.copyTo(result(cv::Rect(0, 0, col, row))); return result; } // 所有的代码修改都在这个函数中 void detect(cv::Mat &image, cv::dnn::Net &net, std::vector<Detection> &output, const std::vector<std::string> &className) { cv::Mat blob; auto input_image = format_yolov5(image); cv::dnn::blobFromImage(input_image, blob, 1./255., cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false); net.setInput(blob); std::vector<cv::Mat> outputs; // 添加代码,使用opencv4.5.5的时候注释掉,使用opencv4.7.0可以使用 net.enableWinograd(false); net.forward(outputs, net.getUnconnectedOutLayersNames()); float x_factor = input_image.cols / INPUT_WIDTH; float y_factor = input_image.rows / INPUT_HEIGHT; float *data = (float *)outputs[0].data; const int dimensions = 85; const int rows = 25200; const int max_wh = 768; // 这个值是偏移量,这个酌情选择,不然太大会导致dnn:nms不工作 // 添加代码 int out_dim2 = outputs[0].size[2]; // 这里的是class+conf+xywh,相当于COCO的指标的85 std::vector<int> class_ids; std::vector<float> confidences; std::vector<cv::Rect> boxes; std::vector<cv::Rect> boxes_muti; for (int i = 0; i < rows; ++i) { // 添加代码 int index = i * out_dim2; // 每一次循环索引都是下一个pre_box的初始位置 float confidence = data[4 + index]; // 修改代码 这样读取的值就是下一个的pre_box的conf if (confidence >= CONFIDENCE_THRESHOLD) { // 修改代码 这样读取的值就是下一个的pre_box的class float * classes_scores = data + 5 + index; cv::Mat scores(1, className.size(), CV_32FC1, classes_scores); cv::Point class_id; double max_class_score; minMaxLoc(scores, 0, &max_class_score, 0, &class_id); max_class_score *= confidence; // conf = obj_conf * cls_conf if (max_class_score > SCORE_THRESHOLD) { confidences.push_back(max_class_score); class_ids.push_back(class_id.x); // 修改代码,这样读取的值就是下一个的pre_box的xywh float x = data[0 + index]; float y = data[1 + index]; float w = data[2 + index]; float h = data[3 + index]; int left = int((x - 0.5 * w) * x_factor); int top = int((y - 0.5 * h) * y_factor); int width = int(w * x_factor); int height = int(h * y_factor); boxes.push_back(cv::Rect(left, top, width, height)); // 实现多分类NMS,如果不需要实现,就直接删掉该部分 // 在这里添加的是类似yolov5nms的class_id位置偏移 int left_muti = int((x - 0.5 * w) * x_factor + class_id.x * max_wh); int top_muti = int((y - 0.5 * h) * y_factor + class_id.x * max_wh); int width_muti = int(w * x_factor + class_id.x * max_wh); int height_muti = int(h * y_factor + class_id.x * max_wh); boxes_muti.push_back(cv::Rect(left_muti, top_muti, width_muti, height_muti)); } } } std::vector<int> nms_result; cv::dnn::NMSBoxes(boxes_muti, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, nms_result); for (int i = 0; i < nms_result.size(); i++) { int idx = nms_result[i]; Detection result; result.class_id = class_ids[idx]; result.confidence = confidences[idx]; result.box = boxes[idx]; output.push_back(result); } } int main(int argc, char **argv) { std::vector<std::string> class_list = load_class_list(); cv::Mat frame; cv::VideoCapture capture("sample_fire2.mp4"); // 如果想要将结果保存为视频 /* cv::VideoWriter writer; int coder = cv::VideoWriter::fourcc('M', 'J', 'P', 'G'); double fps_w = 25.0;//设置视频帧率 std::string filename = "fire.avi";//保存的视频文件名称 writer.open(filename, coder, fps_w, cv::Size(640, 360));//创建保存视频文件的视频流 Size(640, 360)是smaple_fire2.mp4的分辨率 */ if (!capture.isOpened()) { std::cerr << "Error opening video file "; return -1; } // 因为是window系统,且直接使用VStudio运行代码的,如果想使用cuda,直接将is_cuda = true即可 bool is_cuda = argc > 1 && strcmp(argv[1], "cuda") == 0; cv::dnn::Net net; load_net(net, is_cuda); auto start = std::chrono::high_resolution_clock::now(); int frame_count = 0; float fps = -1; int total_frames = 0; while (true) { capture.read(frame); if (frame.empty()) { std::cout << "End of stream "; break; } std::vector<Detection> output; detect(frame, net, output, class_list); frame_count++; total_frames++; int detections = output.size(); for (int i = 0; i < detections; ++i) { auto detection = output[i]; auto box = detection.box; auto classId = detection.class_id; const auto color = colors[classId % colors.size()]; cv::rectangle(frame, box, color, 3); cv::rectangle(frame, cv::Point(box.x, box.y - 20), cv::Point(box.x + box.width, box.y), color, cv::FILLED); cv::putText(frame, class_list[classId].c_str(), cv::Point(box.x, box.y - 5), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); } if (frame_count >= 30) { auto end = std::chrono::high_resolution_clock::now(); fps = frame_count * 1000.0 / std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count(); frame_count = 0; start = std::chrono::high_resolution_clock::now(); } if (fps > 0) { std::ostringstream fps_label; fps_label << std::fixed << std::setprecision(2); fps_label << "FPS: " << fps; std::string fps_label_str = fps_label.str(); cv::putText(frame, fps_label_str.c_str(), cv::Point(10, 25), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 0, 255), 2); } cv::imshow("output", frame); // writer.write(frame); // 如果想要将结果保存为视频 if (cv::waitKey(1) != -1) { capture.release(); // writer.release(); // 如果想要将结果保存为视频 std::cout << "finished by user "; break; } } std::cout << "Total frames: " << total_frames << " "; return 0; }
c++ 推理结果
opencv 4.5.5
yolov5 v6.1 导出的是yolov5n.onnx
<iframe id="0Mwxy3g2-1705910351516" frameborder="0" src="//i2.wp.com/live.csdn.net/v/embed/360961" allowfullscreen="true" data-mediaembed="csdn"></iframe>
yolov5_deploy_fire
opencv 4.7.0
yolov5 v6.1 导出的是yolov5n.onnx
<iframe id="dNVpeYh2-1705910869680" frameborder="0" src="//i2.wp.com/live.csdn.net/v/embed/360968" allowfullscreen="true" data-mediaembed="csdn"></iframe>
yolov5_deploy_fire2