说明:提供MD5算法代码和测试示例代码
简介:MD5(Message Digest Algorithm 5)是一种常用的加密算法,它将任意长度的“字节串”映射为一个128位的大数,并且设计者寄希望于它无法逆向生成或逆向碰撞。
MD5算法具有以下特性:
确定性:对于相同的输入,MD5算法总是产生相同的结果。
非逆向性:已知一个MD5散列,要找到原始输入是非常困难的。即使输入只有微小的变化,MD5的结果也会有巨大的差异。
雪崩效应:当输入数据发生变化时,MD5的结果会产生极大的差异,这使得它适合用于检测数据的完整性。
然而,随着计算机科学的发展,MD5已经被证明存在一些弱点,特别是关于碰撞的问题。因此,它现在主要用于检测数据的完整性,而不是用于安全敏感的应用,如密码存储。
例如,你可以使用MD5来检查下载的文件是否被篡改,或者在数据库中存储密码时确保密码的正确性。但请注意,不应该用MD5来存储密码或执行敏感的身份验证。在这种情况下,应该使用更安全的哈希函数,如bcrypt或Argon2。
#include <stdio.h> #include <stdint.h> #include <string.h> /* md5 ------------------------------------------------------------------------------------------------------------- */ #if 1 typedef struct { unsigned long total[2]; /*!< number of bytes processed 处理的字节数*/ unsigned long state[4]; /*!< intermediate digest state 摘要状态*/ unsigned char buffer[64]; /*!< data block being processed 正在处理的数据块*/ unsigned char ipad[64]; /*!< HMAC: inner padding HMAC:内部填充 */ unsigned char opad[64]; /*!< HMAC: outer padding HMAC:外部填充 */ } tiny_md5_context; #endif #define TINY_CRYPT_MD5 #if defined(TINY_CRYPT_MD5) /* * 32-bit integer manipulation macros (little endian) */ #ifndef GET_ULONG_LE #define GET_ULONG_LE(n,b,i) { (n) = ( (unsigned long) (b)[(i) ] ) | ( (unsigned long) (b)[(i) + 1] << 8 ) | ( (unsigned long) (b)[(i) + 2] << 16 ) | ( (unsigned long) (b)[(i) + 3] << 24 ); } #endif #ifndef PUT_ULONG_LE #define PUT_ULONG_LE(n,b,i) { (b)[(i) ] = (unsigned char) ( (n) ); (b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); (b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); (b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); } #endif /* * MD5 context setup */ void tiny_md5_starts(tiny_md5_context * ctx) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; } static void md5_process(tiny_md5_context * ctx, unsigned char data[64]) { unsigned long X[16], A, B, C, D; GET_ULONG_LE(X[0], data, 0); GET_ULONG_LE(X[1], data, 4); GET_ULONG_LE(X[2], data, 8); GET_ULONG_LE(X[3], data, 12); GET_ULONG_LE(X[4], data, 16); GET_ULONG_LE(X[5], data, 20); GET_ULONG_LE(X[6], data, 24); GET_ULONG_LE(X[7], data, 28); GET_ULONG_LE(X[8], data, 32); GET_ULONG_LE(X[9], data, 36); GET_ULONG_LE(X[10], data, 40); GET_ULONG_LE(X[11], data, 44); GET_ULONG_LE(X[12], data, 48); GET_ULONG_LE(X[13], data, 52); GET_ULONG_LE(X[14], data, 56); GET_ULONG_LE(X[15], data, 60); #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n))) #define P(a,b,c,d,k,s,t) { a += F(b,c,d) + X[k] + t; a = S(a,s) + b; } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; #define F(x,y,z) (z ^ (x & (y ^ z))) P(A, B, C, D, 0, 7, 0xD76AA478); P(D, A, B, C, 1, 12, 0xE8C7B756); P(C, D, A, B, 2, 17, 0x242070DB); P(B, C, D, A, 3, 22, 0xC1BDCEEE); P(A, B, C, D, 4, 7, 0xF57C0FAF); P(D, A, B, C, 5, 12, 0x4787C62A); P(C, D, A, B, 6, 17, 0xA8304613); P(B, C, D, A, 7, 22, 0xFD469501); P(A, B, C, D, 8, 7, 0x698098D8); P(D, A, B, C, 9, 12, 0x8B44F7AF); P(C, D, A, B, 10, 17, 0xFFFF5BB1); P(B, C, D, A, 11, 22, 0x895CD7BE); P(A, B, C, D, 12, 7, 0x6B901122); P(D, A, B, C, 13, 12, 0xFD987193); P(C, D, A, B, 14, 17, 0xA679438E); P(B, C, D, A, 15, 22, 0x49B40821); #undef F #define F(x,y,z) (y ^ (z & (x ^ y))) P(A, B, C, D, 1, 5, 0xF61E2562); P(D, A, B, C, 6, 9, 0xC040B340); P(C, D, A, B, 11, 14, 0x265E5A51); P(B, C, D, A, 0, 20, 0xE9B6C7AA); P(A, B, C, D, 5, 5, 0xD62F105D); P(D, A, B, C, 10, 9, 0x02441453); P(C, D, A, B, 15, 14, 0xD8A1E681); P(B, C, D, A, 4, 20, 0xE7D3FBC8); P(A, B, C, D, 9, 5, 0x21E1CDE6); P(D, A, B, C, 14, 9, 0xC33707D6); P(C, D, A, B, 3, 14, 0xF4D50D87); P(B, C, D, A, 8, 20, 0x455A14ED); P(A, B, C, D, 13, 5, 0xA9E3E905); P(D, A, B, C, 2, 9, 0xFCEFA3F8); P(C, D, A, B, 7, 14, 0x676F02D9); P(B, C, D, A, 12, 20, 0x8D2A4C8A); #undef F #define F(x,y,z) (x ^ y ^ z) P(A, B, C, D, 5, 4, 0xFFFA3942); P(D, A, B, C, 8, 11, 0x8771F681); P(C, D, A, B, 11, 16, 0x6D9D6122); P(B, C, D, A, 14, 23, 0xFDE5380C); P(A, B, C, D, 1, 4, 0xA4BEEA44); P(D, A, B, C, 4, 11, 0x4BDECFA9); P(C, D, A, B, 7, 16, 0xF6BB4B60); P(B, C, D, A, 10, 23, 0xBEBFBC70); P(A, B, C, D, 13, 4, 0x289B7EC6); P(D, A, B, C, 0, 11, 0xEAA127FA); P(C, D, A, B, 3, 16, 0xD4EF3085); P(B, C, D, A, 6, 23, 0x04881D05); P(A, B, C, D, 9, 4, 0xD9D4D039); P(D, A, B, C, 12, 11, 0xE6DB99E5); P(C, D, A, B, 15, 16, 0x1FA27CF8); P(B, C, D, A, 2, 23, 0xC4AC5665); #undef F #define F(x,y,z) (y ^ (x | ~z)) P(A, B, C, D, 0, 6, 0xF4292244); P(D, A, B, C, 7, 10, 0x432AFF97); P(C, D, A, B, 14, 15, 0xAB9423A7); P(B, C, D, A, 5, 21, 0xFC93A039); P(A, B, C, D, 12, 6, 0x655B59C3); P(D, A, B, C, 3, 10, 0x8F0CCC92); P(C, D, A, B, 10, 15, 0xFFEFF47D); P(B, C, D, A, 1, 21, 0x85845DD1); P(A, B, C, D, 8, 6, 0x6FA87E4F); P(D, A, B, C, 15, 10, 0xFE2CE6E0); P(C, D, A, B, 6, 15, 0xA3014314); P(B, C, D, A, 13, 21, 0x4E0811A1); P(A, B, C, D, 4, 6, 0xF7537E82); P(D, A, B, C, 11, 10, 0xBD3AF235); P(C, D, A, B, 2, 15, 0x2AD7D2BB); P(B, C, D, A, 9, 21, 0xEB86D391); #undef F ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; } /* * MD5 process buffer */ void tiny_md5_update(tiny_md5_context * ctx, unsigned char *input, int ilen) { int fill; unsigned long left; if (ilen <= 0) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += ilen; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < (unsigned long)ilen) ctx->total[1]++; if (left && ilen >= fill) { memcpy((void *)(ctx->buffer + left), (void *)input, fill); md5_process(ctx, ctx->buffer); input += fill; ilen -= fill; left = 0; } while (ilen >= 64) { md5_process(ctx, input); input += 64; ilen -= 64; } if (ilen > 0) { memcpy((void *)(ctx->buffer + left), (void *)input, ilen); } } static const unsigned char md5_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* * MD5 final digest MD5最终摘要 */ void tiny_md5_finish(tiny_md5_context * ctx, unsigned char output[16]) { unsigned long last, padn; unsigned long high, low; unsigned char msglen[8]; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_ULONG_LE(low, msglen, 0); PUT_ULONG_LE(high, msglen, 4); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); tiny_md5_update(ctx, (unsigned char *)md5_padding, padn); tiny_md5_update(ctx, msglen, 8); PUT_ULONG_LE(ctx->state[0], output, 0); PUT_ULONG_LE(ctx->state[1], output, 4); PUT_ULONG_LE(ctx->state[2], output, 8); PUT_ULONG_LE(ctx->state[3], output, 12); } /* * output = MD5( input buffer ) */ void tiny_md5(unsigned char *input, int ilen, unsigned char output[16]) { tiny_md5_context ctx; tiny_md5_starts(&ctx); tiny_md5_update(&ctx, input, ilen); tiny_md5_finish(&ctx, output); memset(&ctx, 0, sizeof(tiny_md5_context)); } /* * MD5 HMAC context setup MD5 HMAC上下文设置 */ void tiny_md5_hmac_starts(tiny_md5_context * ctx, unsigned char *key, int keylen) { int i; unsigned char sum[16]; if (keylen > 64) { tiny_md5(key, keylen, sum); keylen = 16; key = sum; } memset(ctx->ipad, 0x36, 64); memset(ctx->opad, 0x5C, 64); for (i = 0; i < keylen; i++) { ctx->ipad[i] = (unsigned char)(ctx->ipad[i] ^ key[i]); ctx->opad[i] = (unsigned char)(ctx->opad[i] ^ key[i]); } tiny_md5_starts(ctx); tiny_md5_update(ctx, ctx->ipad, 64); memset(sum, 0, sizeof(sum)); } /* * MD5 HMAC process buffer MD5 HMAC进程缓冲区 */ void tiny_md5_hmac_update(tiny_md5_context * ctx, unsigned char *input, int ilen) { tiny_md5_update(ctx, input, ilen); } /* * MD5 HMAC final digest MD5 HMAC最终摘要 */ void tiny_md5_hmac_finish(tiny_md5_context * ctx, unsigned char output[16]) { unsigned char tmpbuf[16]; tiny_md5_finish(ctx, tmpbuf); tiny_md5_starts(ctx); tiny_md5_update(ctx, ctx->opad, 64); tiny_md5_update(ctx, tmpbuf, 16); tiny_md5_finish(ctx, output); memset(tmpbuf, 0, sizeof(tmpbuf)); } /* * output = HMAC-MD5( hmac key, input buffer ) */ void tiny_md5_hmac(unsigned char *key, int keylen, unsigned char *input, int ilen,unsigned char *od) { unsigned char output[16]; tiny_md5_context ctx; tiny_md5_hmac_starts(&ctx, key, keylen); tiny_md5_hmac_update(&ctx, input, ilen); tiny_md5_hmac_finish(&ctx, output); /*增加*/ for (uint8_t var = 0; var < 16; ++var) { *(od+var) = output[var]; } /*增加*/ memset(&ctx, 0, sizeof(tiny_md5_context)); } #endif //测试 int main() { uint8_t data[] = {0x12, 0x34, 0x56, 0x78}; uint8_t output[16]; tiny_md5((unsigned char *)&data[0],4,(unsigned char *)&output[0]); for (uint8_t var = 0; var < 16; ++var) { printf("%02X",output[var]); } printf(" "); return 0; } //计算结果 //891A26E0581A7F2C9A574CEFF1549EE1