from data_provider.data_factory import data_provider
from exp.exp_basic import Exp_Basic
from utils.tools import EarlyStopping, adjust_learning_rate, cal_accuracy
import torch
import torch.nn as nn
from torch import optim
import os
import time
import warnings
import numpy as np
import pdb
warnings.filterwarnings('ignore')
class Exp_Classification(Exp_Basic):
def __init__(self, args):
super(Exp_Classification, self).__init__(args)
#创建模型
def _build_model(self):
# model input depends on data
train_data, train_loader = self._get_data(flag='TRAIN')
test_data, test_loader = self._get_data(flag='TEST')
self.args.seq_len = max(train_data.max_seq_len, test_data.max_seq_len)
self.args.pred_len = 0
self.args.enc_in = train_data.feature_df.shape[1]
self.args.num_class = len(train_data.class_names)
# model init
model = self.model_dict[self.args.model].Model(self.args).float()
if self.args.use_multi_gpu and self.args.use_gpu:
model = nn.DataParallel(model, device_ids=self.args.device_ids)
return model
#获取数据
def _get_data(self, flag):
data_set, data_loader = data_provider(self.args, flag)
return data_set, data_loader
#选择优化器
def _select_optimizer(self):
model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
return model_optim
#选择评估标准函数
def _select_criterion(self):
#交叉熵
criterion = nn.CrossEntropyLoss()
return criterion
#验证方法,通过计算模型验证的误差来评估模型性能
def vali(self, vali_data, vali_loader, criterion):
total_loss = []
preds = []
trues = []
#设置评估模式
self.model.eval()
#关闭梯度计算,节省内存和计算资源
with torch.no_grad():
for i, (batch_x, label, padding_mask) in enumerate(vali_loader):
#将转化为浮点型的数据加载到cpu或gpu
batch_x = batch_x.float().to(self.device)
padding_mask = padding_mask.float().to(self.device)
label = label.to(self.device)
#传入输入数据并获取输出
outputs = self.model(batch_x, padding_mask, None, None)
pred = outputs.detach().cpu()
loss = criterion(pred, label.long().squeeze().cpu())
#将loss添加total_loss列表
total_loss.append(loss)
preds.append(outputs.detach())
trues.append(label)
#计算total_loss列表均值
total_loss = np.average(total_loss)
preds = torch.cat(preds, 0)
trues = torch.cat(trues, 0)
probs = torch.nn.functional.softmax(preds) # (total_samples, num_classes) est. prob. for each class and sample
predictions = torch.argmax(probs, dim=1).cpu().numpy() # (total_samples,) int class index for each sample
trues = trues.flatten().cpu().numpy()
accuracy = cal_accuracy(predictions, trues)
#将模型切换成训练模型
self.model.train()
return total_loss, accuracy
def train(self, setting):
train_data, train_loader = self._get_data(flag='TRAIN')
vali_data, vali_loader = self._get_data(flag='TEST')
test_data, test_loader = self._get_data(flag='TEST')
path = os.path.join(self.args.checkpoints, setting)
if not os.path.exists(path):
os.makedirs(path)
#获取时间
time_now = time.time()
#训练长度
train_steps = len(train_loader)
#早起停止函数,避免过拟合 patience 容忍升高次数
early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
#选择优化器
model_optim = self._select_optimizer()
#选择损失函数,这里选择交叉熵
criterion = self._select_criterion()
for epoch in range(self.args.train_epochs):
iter_count = 0
train_loss = []
#选择训练模式
self.model.train()
epoch_time = time.time()
#加载训练数据
for i, (batch_x, label, padding_mask) in enumerate(train_loader):
iter_count += 1
#将模型中的梯度设置为0
model_optim.zero_grad()
#将转化为浮点型的数据加载到cpu或gpu
batch_x = batch_x.float().to(self.device)
padding_mask = padding_mask.float().to(self.device)
label = label.to(self.device)
outputs = self.model(batch_x, padding_mask, None, None)
loss = criterion(outputs, label.long().squeeze(-1))
train_loss.append(loss.item())
if (i + 1) % 100 == 0:
print(" iters: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
speed = (time.time() - time_now) / iter_count
left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
print(' speed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
iter_count = 0
time_now = time.time()
#计算当前梯度,反向传播
loss.backward()
nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=4.0)
#根据梯度更新网络参数
model_optim.step()
print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
#计算train_loss列表均值
train_loss = np.average(train_loss)
#验证方法,通过计算模型验证的误差来评估模型性能
vali_loss, val_accuracy = self.vali(vali_data, vali_loader, criterion)
test_loss, test_accuracy = self.vali(test_data, test_loader, criterion)
print(
"Epoch: {0}, Steps: {1} | Train Loss: {2:.3f} Vali Loss: {3:.3f} Vali Acc: {4:.3f} Test Loss: {5:.3f} Test Acc: {6:.3f}"
.format(epoch + 1, train_steps, train_loss, vali_loss, val_accuracy, test_loss, test_accuracy))
#早起停止函数,避免过拟合 patience 容忍升高次数
early_stopping(-val_accuracy, self.model, path)
if early_stopping.early_stop:
print("Early stopping")
break
if (epoch + 1) % 5 == 0:
adjust_learning_rate(model_optim, epoch + 1, self.args)
#加载训练模型
best_model_path = path + '/' + 'checkpoint.pth'
self.model.load_state_dict(torch.load(best_model_path))
return self.model
def test(self, setting, test=0):
test_data, test_loader = self._get_data(flag='TEST')
if test:
print('loading model')
self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))
preds = []
trues = []
#检测是否已经创建文件路径,未存在路径则创建该文件
folder_path = './test_results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
#设置评估模型
self.model.eval()
#关闭梯度计算,节省内存和计算资源
with torch.no_grad():
#迭代测试数据加载器,每次迭代添加数据标签
for i, (batch_x, label, padding_mask) in enumerate(test_loader):
#将数据的数据类型转化为浮点型,加载到GPU或CPU
batch_x = batch_x.float().to(self.device)
padding_mask = padding_mask.float().to(self.device)
label = label.to(self.device)
#根据模型计算
outputs = self.model(batch_x, padding_mask, None, None)
preds.append(outputs.detach())
trues.append(label)
preds = torch.cat(preds, 0)
trues = torch.cat(trues, 0)
print('test shape:', preds.shape, trues.shape)
probs = torch.nn.functional.softmax(preds) # (total_samples, num_classes) est. prob. for each class and sample
predictions = torch.argmax(probs, dim=1).cpu().numpy() # (total_samples,) int class index for each sample
trues = trues.flatten().cpu().numpy()
#准确率计算
accuracy = cal_accuracy(predictions, trues)
# result save
folder_path = './results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
#准确率打印存储
print('accuracy:{}'.format(accuracy))
file_name='result_classification.txt'
f = open(os.path.join(folder_path,file_name), 'a')
f.write(setting + "
")
f.write('accuracy:{}'.format(accuracy))
f.write('
')
f.write('
')
f.close()
return